Latest YouTube Video

Wednesday, June 10, 2015

Dynamic Consistency of Conditional Simple Temporal Networks via Mean Payoff Games: a Singly-Exponential Time DC-Checking. (arXiv:1505.00828v3 [cs.DS] UPDATED)

Conditional Simple Temporal Network (CSTN) is a constraint-based graph-formalism for conditional temporal planning. It offers a more flexible formalism than the equivalent CSTP model of Tsamardinos, Vidal and Pollack, from which it was derived mainly as a sound formalization. Three notions of consistency arise for CSTNs and CSTPs: weak, strong, and dynamic. Dynamic consistency is the most interesting notion, but it is also the most challenging and it was conjectured to be hard to assess. Tsamardinos, Vidal and Pollack gave a doubly-exponential time algorithm for deciding whether a CSTN is dynamically-consistent and to produce, in the positive case, a dynamic execution strategy of exponential size. In the present work we offer a proof that deciding whether a CSTN is dynamically-consistent is coNP-hard and provide the first singly-exponential time algorithm for this problem, also producing a dynamic execution strategy whenever the input CSTN is dynamically-consistent. The algorithm is based on a novel connection with Mean Payoff Games, a family of two-player combinatorial games on graphs well known for having applications in model-checking and formal verification. The presentation of such connection is mediated by the Hyper Temporal Network model, a tractable generalization of Simple Temporal Networks whose consistency checking is equivalent to determining Mean Payoff Games. In order to analyze the algorithm we introduce a refined notion of dynamic-consistency, named \epsilon-dynamic-consistency, and present a sharp lower bounding analysis on the critical value of the reaction time \hat{\varepsilon} where the CSTN transits from being, to not being, dynamically-consistent. The proof technique introduced in this analysis of \hat{\varepsilon} is applicable more in general when dealing with linear difference constraints which include strict inequalities.



from cs.AI updates on arXiv.org http://ift.tt/1DRnNT1
via IFTTT

No comments: