Latest YouTube Video

Tuesday, August 25, 2015

Clustering With Side Information: From a Probabilistic Model to a Deterministic Algorithm. (arXiv:1508.06235v1 [stat.ML])

In this paper, we propose a model-based clustering method (TVClust) that robustly incorporates noisy side information as soft-constraints and aims to seek a consensus between side information and the observed data. Our method is based on a nonparametric Bayesian hierarchical model that combines the probabilistic model for the data instance and the one for the side-information. An efficient Gibbs sampling algorithm is proposed for posterior inference. Using the small-variance asymptotics of our probabilistic model, we then derive a new deterministic clustering algorithm (RDP-means). It can be viewed as an extension of K-means that allows for the inclusion of side information and has the additional property that the number of clusters does not need to be specified a priori. Empirical studies have been carried out to compare our work with many constrained clustering algorithms from the literature on both a variety of data sets and under a variety of conditions such as using noisy side information and erroneous k values. The results of our experiments show strong results for our probabilistic and deterministic approaches under these conditions when compared to other algorithms in the literature.



from cs.AI updates on arXiv.org http://ift.tt/1hF5KN3
via IFTTT

No comments: