Latest YouTube Video

Thursday, February 25, 2016

Causal Discovery from Subsampled Time Series Data by Constraint Optimization. (arXiv:1602.07970v1 [cs.AI])

This paper focuses on causal structure estimation from time series data in which measurements are obtained at a coarser timescale than the causal timescale of the underlying system. Previous work has shown that such sub-sampling can lead to significant errors about the system's causal structure if not properly taken into account. In this paper, we first consider the search for the system timescale causal structures that correspond to a given measurement timescale structure. We provide a constraint satisfaction procedure whose computational performance is several orders of magnitude better than previous approaches, and that has considerably broader applicability. We then consider finite sample data as input, and propose the first constraint optimization approach for recovering the system timescale causal structure. This algorithm optimally recovers from possible conflicts due to statistical errors. More generally, these advances allow for a robust and non-parametric estimation of system timescale causal structures from subsampled time series data.

Donate to arXiv



from cs.AI updates on arXiv.org http://ift.tt/21vgteo
via IFTTT

No comments: