Latest YouTube Video

Monday, May 30, 2016

Fundamental Differences between Dropout and Weight Decay in Deep Networks. (arXiv:1602.04484v3 [cs.LG] UPDATED)

We analyze dropout in deep networks with rectified linear units and the quadratic loss. Our results expose surprising differences between the behavior of dropout and more traditional regularizers like weight decay. For example, on some simple data sets dropout training produces negative weights even though the output is the sum of the inputs. This provides a counterpoint to the suggestion that dropout discourages co-adaptation of weights. We also show that the dropout penalty can grow exponentially in the depth of the network while the weight-decay penalty remains essentially linear, and that dropout is insensitive to various re-scalings of the input features, outputs, and network weights. This last insensitivity implies that there are no isolated local minima of the dropout training criterion. Our work uncovers new properties of dropout, extends our understanding of why dropout succeeds, and lays the foundation for further progress.



from cs.AI updates on arXiv.org http://ift.tt/1KSFax2
via IFTTT

No comments: