There is a consensus that human and non-human subjects experience temporal distortions in many stages of their perceptual and decision-making systems. Similarly, intertemporal choice research has shown that decision-makers undervalue future outcomes relative to immediate ones. Here we combine techniques from information theory and artificial intelligence to show how both temporal distortions and intertemporal choice preferences can be explained as a consequence of the coding efficiency of sensorimotor representation. In particular, the model implies that interactions that constrain future behavior are perceived as being both longer in duration and more valuable. Furthermore, using simulations of artificial agents, we investigate how memory constraints enforce a renormalization of the perceived timescales. Our results show that qualitatively different discount functions, such as exponential and hyperbolic discounting, arise as a consequence of an agent's probabilistic model of the world.
from cs.AI updates on arXiv.org http://ift.tt/1qUPY4Z
via IFTTT
No comments:
Post a Comment