Latest YouTube Video

Wednesday, June 15, 2016

Deep Reinforcement Learning With Macro-Actions. (arXiv:1606.04615v1 [cs.LG])

Deep reinforcement learning has been shown to be a powerful framework for learning policies from complex high-dimensional sensory inputs to actions in complex tasks, such as the Atari domain. In this paper, we explore output representation modeling in the form of temporal abstraction to improve convergence and reliability of deep reinforcement learning approaches. We concentrate on macro-actions, and evaluate these on different Atari 2600 games, where we show that they yield significant improvements in learning speed. Additionally, we show that they can even achieve better scores than DQN. We offer analysis and explanation for both convergence and final results, revealing a problem deep RL approaches have with sparse reward signals.



from cs.AI updates on arXiv.org http://ift.tt/1rqV60t
via IFTTT

No comments: