We present a transition-based parser that jointly produces syntactic and semantic dependencies. It learns a representation of the entire algorithm state, using stack long short-term memories. Our greedy inference algorithm has linear time, including feature extraction. On the CoNLL 2008--9 English shared tasks, we obtain the best published parsing performance among models that jointly learn syntax and semantics.
DONATE to arXiv: One hundred percent of your contribution will fund improvements and new initiatives to benefit arXiv's global scientific community. Please join the Simons Foundation and our generous member organizations and research labs in supporting arXiv. https://goo.gl/QIgRpr
from cs.AI updates on arXiv.org http://ift.tt/29qZ3Ls
via IFTTT
No comments:
Post a Comment