We present in this paper an efficient approach for acoustic scene classification by exploring the structure of class labels. Given a set of class labels, a category taxonomy is automatically learned by collectively optimizing a clustering of the labels into multiple meta-classes in a tree structure. An acoustic scene instance is then embedded into a low-dimensional feature representation which consists of the likelihoods that it belongs to the meta-classes. We demonstrate state-of-the-art results on two different datasets for the acoustic scene classification task, including the DCASE 2013 and LITIS Rouen datasets.
DONATE to arXiv: One hundred percent of your contribution will fund improvements and new initiatives to benefit arXiv's global scientific community. Please join the Simons Foundation and our generous member organizations and research labs in supporting arXiv. https://goo.gl/QIgRpr
from cs.AI updates on arXiv.org http://ift.tt/28ZsKDL
via IFTTT
No comments:
Post a Comment