Latest YouTube Video

Monday, June 6, 2016

PAC-Bayes Analysis of Multi-view Learning. (arXiv:1406.5614v2 [cs.LG] UPDATED)

This paper presents eight PAC-Bayes bounds to analyze the generalization performance of multi-view classifiers. These bounds adopt data dependent Gaussian priors which emphasize classifiers with high view agreements. The center of the prior for the first two bounds is the origin, while the center of the prior for the third and fourth bounds is given by a data dependent vector. An important technique to obtain these bounds is two derived logarithmic determinant inequalities whose difference lies in whether the dimensionality of data is involved. The centers of the fifth and sixth bounds are calculated on a separate subset of the training set. The last two bounds use unlabeled data to represent view agreements and are thus applicable to semi-supervised multi-view learning. We evaluate all the presented multi-view PAC-Bayes bounds on benchmark data and compare them with previous single-view PAC-Bayes bounds. The usefulness and performance of the multi-view bounds are discussed.



from cs.AI updates on arXiv.org http://ift.tt/1irwzDB
via IFTTT

No comments: