Latest YouTube Video

Wednesday, October 5, 2016

Visual Question Answering: Datasets, Algorithms, and Future Challenges. (arXiv:1610.01465v1 [cs.CV])

Visual Question Answering (VQA) is a recent problem in computer vision and natural language processing that has garnered a large amount of interest from the deep learning, computer vision, and natural language processing communities. In VQA, an algorithm needs to answer text-based questions about images. Since the release of the first VQA dataset in 2014, several additional datasets have been released and many algorithms have been proposed. In this review, we critically examine the current state of VQA in terms of problem formulation, existing datasets, evaluation metrics, and algorithms. In particular, we discuss the limitations of current datasets with regard to their ability to properly train and assess VQA algorithms. We then exhaustively review existing algorithms for VQA. Finally, we discuss possible future directions for VQA and image understanding research.



from cs.AI updates on arXiv.org http://ift.tt/2cUI3xg
via IFTTT

No comments: