Latest YouTube Video

Monday, November 21, 2016

Latent Dependency Forest Models. (arXiv:1609.02236v2 [cs.AI] UPDATED)

Probabilistic modeling is one of the foundations of modern machine learning and artificial intelligence. In this paper, we propose a novel type of probabilistic models named latent dependency forest models (LDFMs). A LDFM models the dependencies between random variables with a forest structure that can change dynamically based on the variable values. It is therefore capable of modeling context-specific independence. We parameterize a LDFM using a first-order non-projective dependency grammar. Learning LDFMs from data can be formulated purely as a parameter learning problem, and hence the difficult problem of model structure learning is circumvented. Our experimental results show that LDFMs are competitive with existing probabilistic models.



from cs.AI updates on arXiv.org http://ift.tt/2cxDR7C
via IFTTT

No comments: