This paper presents a framework to tackle combinatorial optimization problems using neural networks and reinforcement learning. We focus on the traveling salesman problem (TSP) and train a recurrent network that, given a set of city coordinates, predicts a distribution over different city permutations. Using negative tour length as the reward signal, we optimize the parameters of the recurrent network using a policy gradient method. We compare learning the network parameters on a set of training graphs against learning them on individual test graphs. The best results are obtained when the network is first optimized on a training set and then refined on individual test graphs. Without any supervision and with minimal engineering, Neural Combinatorial Optimization achieves close to optimal results on 2D Euclidean graphs with up to 100 nodes.
from cs.AI updates on arXiv.org http://ift.tt/2gzTY6W
via IFTTT
No comments:
Post a Comment