Latest YouTube Video

Monday, November 14, 2016

Zero-resource Machine Translation by Multimodal Encoder-decoder Network with Multimedia Pivot. (arXiv:1611.04503v1 [cs.CL])

We propose an approach to build a neural machine translation system with no supervised resources (i.e., no parallel corpora) using multimodal embedded representation over texts and images. Based on the assumption that text documents are often likely to be described with other multimedia information (e.g., images) somewhat related to the content, we try to indirectly estimate the relevance between two languages. Using multimedia as the "pivot", we project all modalities into one common hidden space where samples belonging to similar semantic concepts should come close to each other, whatever the observed space of each sample is. This modality-agnostic representation is the key to bridging the gap between different modalities. Putting a decoder on top of it, our network can flexibly draw the outputs from any input modality. Notably, in the testing phase, we need only source language texts as the input for translation. In experiments, we tested our method on two benchmarks to show that it can achieve reasonable translation performance. We compared and investigated several possible implementations and found that an end-to-end model that simultaneously optimized both rank loss in multimodal encoders and cross-entropy loss in decoders performed the best.



from cs.AI updates on arXiv.org http://ift.tt/2g9zTrF
via IFTTT

No comments: