Latest YouTube Video

Wednesday, December 14, 2016

Encapsulating models and approximate inference programs in probabilistic modules. (arXiv:1612.04759v1 [cs.AI])

This paper introduces the probabilistic module interface, which allows encapsulation of complex probabilistic models with latent variables alongside custom stochastic approximate inference machinery, and provides a platform-agnostic abstraction barrier separating the model internals from the host probabilistic inference system. The interface can be seen as a stochastic generalization of a standard simulation and density interface for probabilistic primitives. We show that sound approximate inference algorithms can be constructed for networks of probabilistic modules, and we demonstrate that the interface can be implemented using learned stochastic inference networks and MCMC and SMC approximate inference programs.



from cs.AI updates on arXiv.org http://ift.tt/2gCIpKJ
via IFTTT

No comments: