Capturing the interdependencies between real valued time series can be achieved by finding common similar patterns. The abstraction of time series makes the process of finding similarities closer to the way as humans do. Therefore, the abstraction by means of a symbolic levels and finding the common patterns attracts researchers. One particular algorithm, Longest Common Subsequence, has been used successfully as a similarity measure between two sequences including real valued time series. In this paper, we propose Fuzzy Longest Common Subsequence matching for time series.
from cs.AI updates on arXiv.org http://ift.tt/1IYrtZb
via IFTTT
No comments:
Post a Comment