A good dialogue agent should have the ability to interact with users. In this work, we explore this direction by designing a simulator and a set of synthetic tasks in the movie domain that allow the learner to interact with a teacher by both asking and answering questions. We investigate how a learner can benefit from asking questions in both an offline and online reinforcement learning setting. We demonstrate that the learner improves when asking questions. Our work represents a first step in developing end-to-end learned interactive dialogue agents.
from cs.AI updates on arXiv.org http://ift.tt/2gH3ROY
via IFTTT
No comments:
Post a Comment