This paper summarises how the "SP theory of intelligence" and its realisation in the "SP computer model" simplifies and integrates concepts across artificial intelligence and related areas, and thus provides a promising foundation for the development of a general, human-level thinking machine, in accordance with the main goal of research in artificial general intelligence.
The key to this simplification and integration is the powerful concept of "multiple alignment", borrowed and adapted from bioinformatics. This concept has the potential to be the "double helix" of intelligence, with as much significance for human-level intelligence as has DNA for biological sciences.
Strengths of the SP system include: versatility in the representation of diverse kinds of knowledge; versatility in aspects of intelligence (including: strengths in unsupervised learning; the processing of natural language; pattern recognition at multiple levels of abstraction that is robust in the face of errors in data; several kinds of reasoning (including: one-step `deductive' reasoning; chains of reasoning; abductive reasoning; reasoning with probabilistic networks and trees; reasoning with 'rules'; nonmonotonic reasoning and reasoning with default values; Bayesian reasoning with 'explaining away'; and more); planning; problem solving; and more); seamless integration of diverse kinds of knowledge and diverse aspects of intelligence in any combination; and potential for application in several areas (including: helping to solve nine problems with big data; helping to develop human-level intelligence in autonomous robots; serving as a database with intelligence and with versatility in the representation and integration of several forms of knowledge; serving as a vehicle for medical knowledge and as an aid to medical diagnosis; and several more).
from cs.AI updates on arXiv.org http://ift.tt/2i0niHd
via IFTTT
No comments:
Post a Comment