In this paper, we present a link between preference-based and multiobjective sequential decision-making. While transforming a multiobjective problem to a preference-based one is quite natural, the other direction is a bit less obvious. We present how this transformation (from preference-based to multiobjective) can be done under the classic condition that preferences over histories can be represented by additively decomposable utilities and that the decision criterion to evaluate policies in a state is based on expectation. This link yields a new source of multiobjective sequential decision-making problems (i.e., when reward values are unknown) and justifies the use of solving methods developed in one setting in the other one.
from cs.AI updates on arXiv.org http://ift.tt/2ixayHP
via IFTTT
No comments:
Post a Comment