Model checking of strategic ability under imperfect information is known to be hard. The complexity results range from NP-completeness to undecidability, depending on the precise setup of the problem. No less importantly, fixpoint equivalences do not generally hold for imperfect information strategies, which seriously hampers incremental synthesis of winning strategies. In this paper, we propose translations of ATLir formulae that provide lower and upper bounds for their truth values, and are cheaper to verify than the original specifications. That is, if the expression is verified as true then the corresponding formula of ATLir should also hold in the given model. We begin by showing where the straightforward approach does not work. Then, we propose how it can be modified to obtain guaranteed lower bounds. To this end, we alter the next-step operator in such a way that traversing one's indistinguishability relation is seen as atomic activity. Most interestingly, the lower approximation is provided by a fixpoint expression that uses a nonstandard variant of the next-step ability operator. We show the correctness of the translations, establish their computational complexity, and validate the approach by experiments with a scalable scenario of Bridge play.
from cs.AI updates on arXiv.org http://ift.tt/2h9f4Jm
via IFTTT
No comments:
Post a Comment