Latest YouTube Video

Wednesday, June 3, 2015

A Game-Theoretic Model and Best-Response Learning Method for Ad Hoc Coordination in Multiagent Systems. (arXiv:1506.01170v1 [cs.GT])

The ad hoc coordination problem is to design an autonomous agent which is able to achieve optimal flexibility and efficiency in a multiagent system with no mechanisms for prior coordination. We conceptualise this problem formally using a game-theoretic model, called the stochastic Bayesian game, in which the behaviour of a player is determined by its private information, or type. Based on this model, we derive a solution, called Harsanyi-Bellman Ad Hoc Coordination (HBA), which utilises the concept of Bayesian Nash equilibrium in a planning procedure to find optimal actions in the sense of Bellman optimal control. We evaluate HBA in a multiagent logistics domain called level-based foraging, showing that it achieves higher flexibility and efficiency than several alternative algorithms. We also report on a human-machine experiment at a public science exhibition in which the human participants played repeated Prisoner's Dilemma and Rock-Paper-Scissors against HBA and alternative algorithms, showing that HBA achieves equal efficiency and a significantly higher welfare and winning rate.



from cs.AI updates on arXiv.org http://ift.tt/1BL5mQd
via IFTTT

No comments: