We analyse a quantum-like Bayesian Network that puts together cause/effect relationships and semantic similarities between events. These semantic similarities constitute acausal connections according to the Synchronicity principle and provide new relationships to quantum like probabilistic graphical models. As a consequence, beliefs (or any other event) can be represented in vector spaces, in which quantum parameters are determined by the similarities that these vectors share between them. Events attached by a semantic meaning do not need to have an explanation in terms of cause and effect.
from cs.AI updates on arXiv.org http://ift.tt/1JB0MuV
via IFTTT
No comments:
Post a Comment