We consider effort allocation in crowdsourcing, where we wish to assign labeling tasks to imperfect homogeneous crowd workers to maximize overall accuracy in a continuous-time Bayesian setting, subject to budget and time constraints. The Bayes-optimal policy for this problem is the solution to a partially observable Markov decision process, but the curse of dimensionality renders the computation infeasible. Based on the Lagrangian Relaxation technique in Adelman & Mersereau (2008), we provide a computationally tractable instance-specific upper bound on the value of this Bayes-optimal policy, which can in turn be used to bound the optimality gap of any other sub-optimal policy. In an approach similar in spirit to the Whittle index for restless multiarmed bandits, we provide an index policy for effort allocation in crowdsourcing and demonstrate numerically that it outperforms other stateof- arts and performs close to optimal solution.
from cs.AI updates on arXiv.org http://ift.tt/1msMxQo
via IFTTT
No comments:
Post a Comment