Discovering causal relationships from observational data is a crucial problem and it has applications in many research areas. The PC algorithm is the state-of-the-art constraint based method for causal discovery. However, runtime of the PC algorithm, in the worst-case, is exponential to the number of nodes (variables), and thus it is inefficient when being applied to high dimensional data, e.g. gene expression datasets. On another note, the advancement of computer hardware in the last decade has resulted in the widespread availability of multi-core personal computers. There is a significant motivation for designing a parallelised PC algorithm that is suitable for personal computers and does not require end users' parallel computing knowledge beyond their competency in using the PC algorithm. In this paper, we develop parallel-PC, a fast and memory efficient PC algorithm using the parallel computing technique. We apply our method to a range of synthetic and real-world high dimensional datasets. Experimental results on a dataset from the DREAM 5 challenge show that the original PC algorithm could not produce any results after running more than 24 hours; meanwhile, our parallel-PC algorithm managed to finish within around 12 hours with a 4-core CPU computer, and less than 6 hours with a 8-core CPU computer. Furthermore, we integrate parallel-PC into a causal inference method for inferring miRNA-mRNA regulatory relationships. The experimental results show that parallel-PC helps improve both the efficiency and accuracy of the causal inference algorithm.
from cs.AI updates on arXiv.org http://ift.tt/16MqdcX
via IFTTT
No comments:
Post a Comment